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Microstructure functions for a model of statistically inhomogeneous random media

J. Quintanilla* and S. Torquato†

Princeton Materials Institute and Department of Civil Engineering and Operations Research, Princeton University,
Princeton, New Jersey 08544

~Received 8 August 1996!

We propose a model for statistically inhomogeneous two-phase random media, including functionally
graded materials, consisting of inhomogeneous fully penetrable~Poisson distributed! spheres. This model can
be constructed for any specified variation of volume fraction and permits one to represent and evaluate certain
n-point correlation functions that statistically characterize the microstructure for this model. Unlike the case of
statistically homogeneous media, the microstructure functions depend upon the absolute positions of their
arguments. However, as with homogeneous random media, this microstructural information will be useful in
obtaining rigorous estimates of the effective properties of such systems.@S1063-651X~98!08601-2#

PACS number~s!: 05.20.2y, 61.43.Hv, 61.43.Gt
ra
o

ca
n
m
-
et
m

tu
-
e
ch
ni
a

ud
o
sp

th
ie

e
ia
n
p

her

del
ified
ro-

c-

lly
This

-
and
mo-
tu-
i-
our
nt

r-
ry
ex-
een

be-
le

ar-
er-

o
ss

on
I. INTRODUCTION

Much progress has been made in recent years in cha
terizing the microstructure of statistically homogeneous tw
phase random media via a variety ofn-point correlation
functions@1–3#. For ergodic ensembles, then-point correla-
tion functions are translationally invariant, that is, statisti
homogeneity is implied@4#, and hence one can equate e
semble averages with volume averages in the infinite-volu
limit. This microstructural information is fundamental in rig
orously determining the effective transport, electromagn
and mechanical properties of ergodic two-phase random
dia @3,5–10#.

Significantly less research has been devoted to the s
of statistically inhomogeneoustwo-phase media. In such in
stances, ergodicity is lost; that is, one cannot equate
semble and volume averages. One simple example of su
medium is any two-phase system that is defined on a fi
region. However, as we will describe in Sec. II, defining
two-phase medium on an infinite region does not precl
statistical inhomogeneity. Examples of statistically inhom
geneous, two-phase media include porous media with
tially variable fluid permeability@11#, composites in which
the heterogeneity length scale is not much smaller than
macroscopic size of the sample, distributions of galax
@12#, and functionally graded materials@13–18#.

We definef i(x) to be the volume fraction of phasei at a
point x, so thatf1(x)1f2(x)51 for all x. Although most
applications permitf1(x) to vary in only one direction, it
can be chosen to be any function in principle. Simple mod
of statistically inhomogenous media include layered med
so thatf1(x) is a step function. For macroscopically recta
gular systems, a more complicated grade that has been
viously studied is@17#
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f1~x!5S x22x

x22x1
D a

, ~1!

wherea is specified andx1 andx2 are thex coordinates of
the left and right edges of the system, respectively. Anot
variation of the volume fraction is given by

f1~x!5a01a1x1a2x
2, ~2!

where the coefficients are chosen so that 0<f1(x)<1
within the system. However, a specific microstructural mo
is not typically presented that obeys these or other spec
grades in volume fraction, and hence higher-order mic
structural information in the form ofn-point correlation
functions has heretofore not been obtained.

Following the development of the study of the microstru
ture and properties of homogeneous random media@3#, we
propose a microstructural model for particulate, statistica
inhomogeneous two-phase random media in this paper.
model is a two-phase system consisting of aninhomoge-
neous distribution of fully penetrable spheresin space whose
particle density obeysany specified variation in volume frac
tion. The space exterior to the spheres is called phase 1,
phase 2 is the space occupied by the spheres. This inho
geneous model is nontrivial in that cluster formation na
rally arises and it permits significantly more complicated m
crostructures than the aforementioned layered models. F
two-dimensional realizations of this model with differe
grades are shown in Fig. 1.

Explicitly defining this model permits a quantitative cha
acterization of its microstructure, and we will use the theo
of nonstationary Poisson process to develop analytical
pressions for various microstructure functions that have b
evaluated previously for homogeneous models@3#. These
functions include the canonicaln-point microstructure func-
tion Hn @2#, the nearest-neighbor functionsE andH @19#,
and the lineal-path functionL @20#. Definitions and prior
analytical expressions for these functions are presented
fore their evaluation for inhomogeneous fully penetrab
spheres. Unlike the homogeneous case,these microstructure
functions will depend on the absolute positions of their
guments, as discussed in Sec. IV. This statistical charact
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55 1559MICROSTRUCTURE FUNCTIONS FOR A MODEL OF . . .
FIG. 1. Four realizations of statistically inhomogeneous fully penetrable disks. System~a! may be thought of as arising from a centrifug
field, while system~b! can be viewed as a system in an ‘‘anticentrifugal’’ field. System~c! is one under a constant gravitational field in th
vertical direction, whereas system~d! has a linear grade in the volume fraction in the horizontal direction. The density functions of sy
~a!–~d! are given by Eqs.~7!–~10!, respectively, with parameters that are given in the text.
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ization of the microstructure for two-phase random me
will undoubtedly be fundamental in the study of the effecti
properties.

In Sec. II, we describe the mathematical underpinnings
systems of inhomogeneous fully penetrable spheres. We
describe how such systems can be generated by com
simulation. In Sec. III, we discuss previous analytical resu
for the microstructure functions considered in this pap
These functions are evaluated for inhomogeneous fully p
etrable spheres in Sec. IV.

II. DEFINITION OF INHOMOGENEOUS FULLY
PENETRABLE SPHERES

In this section, we provide the mathematical basis for s
tems of inhomogeneous fully penetrable spheres. Altho
based upon the theory of general Poisson processes and
sure theory@21#, we will not use the full abstractions of thi
theory to describe these systems. We then describe how
alizations of inhomogeneous fully penetrable spheres ma
generated by computer simulations.

A. Mathematical basis

We will considerD-dimensional spaceRD as our measur-
able space. We also assume thatn is ameasureon RD, so
that the measurenB of any measurable setB with respect to
n is given by
a

f
lso
ter
s
r.
n-

-
h
ea-

re-
be

nB5E
B
r~x!dx ~3!

for some functionr on RD. When r(x)51 for all x, the
measuren is ordinary Lebesgue measure and hencenB is
simply the volume ofB. Condition ~3! is satisfied ifn is
absolutely continuous to Lebesgue measure@21#.

A general Poisson processN with intensity measuren is
defined to be a point process that satisfies the following
properties@22#: ~i! The number of points in a bounded Le
besgue setB has any Poisson distribution with meannB, that
is, form50,1,2, . . . ,

Pr„N~B!5m…5
~nB!m

m!
e2nB. ~4!

~ii ! For all n>2, the random variablesN(A1), . . . ,N(An)
are independent whenever the Lebesgue setsA1 , . . . ,An are
pairwise disjoint.

The densityr(x) is called thedensity functionof N; this
function will be used often in this paper. It is important
note that ifr(x)5r, a constant, then a general Poisson p
cess reduces to an ordinary Poisson process with num
density ~or intensity! r. However, even ifr(x) is not con-
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1560 55J. QUINTANILLA AND S. TORQUATO
stant, it has an appealing intuitive interpretation:r(x)dx is
the probability that there is a point ofN in an infinitesimal
regiondx aboutx.

We notice from condition~i! that the probability that a
regionB contains no points ofN is

Pr„N~B!50…5e2nB5expF2E
B
r~x!dxG . ~5!

This calculation of theexclusion probabilityfor B will be
used repeatedly for different setsB in the calculations of Sec
IV.

We also notice that this general framework can be use
define systems on afinite regionR by choosing the intensity
function to be the restriction ofr to R, that is,

rR~x!5H r~x!, xPR
0 otherwise.

~6!

The microstructure functions for such finite systems are t
calculated by usingrR in place ofr.

B. Simulation of inhomogeneous fully penetrable spheres

Constructing realizations of general Poisson processes
be easily done in two stages if the density functionr(x) is
bounded onRD @22#, say,r(x)<r* . First, a Poisson proces
of densityr* is simulated. Second, the resulting point p
tern is thinned. Each pointx, independently of the othe
points, is kept with probabilityr(x)/r* or deleted with prob-
ability 12r(x)/r* . The resulting point pattern is a gener
Poisson process with intensity functionr(x). This construc-
tion may be enhanced by partitioningRD into regions in
which r(x) does not vary significantly. Finally, we plac
spheres of common radiusR on the points ofN to construct
a realization of inhomogeneous fully penetrable spheres

Four examples of the density function are given as

r~x,y!5CS rlLR D 2, ~7!

r~x,y!5
C

R2 expS 2
rl

L D , ~8!

r~x,y!5
C

R2 expS 2
yl

L D , ~9!

r~x,y!5
C

R2 lnS @11e#l

@11e#L2xD , ~10!

respectively. Herer is the distance from a fixed point~say
the center of the system!, C is a multiplicative factor,L is the
length scale of the entire system,l is the length scale of the
grade in volume fraction, ande is very small. For all of these
systems, the origin is placed at the lower-left corner. As d
cussed above, the value of the density functionr(x) at a
given pointx is directly correlated to the average density
centers aroundx. The systems generated by these den
functions may be thought of as arising from special exter
fields. System~a! @Eq. ~7!# may be thought of as arising from
a centrifugal field, while system~b! @Eq. ~8!# can be viewed
to

n

an

-

-

f
y
l

as a system in an ‘‘anticentrifugal’’ field. System~c! @Eq.
~9!# is one under a constant gravitational field in the verti
direction, whereas, as we will show in Sec. IV, system~d!
@Eq. ~10!# has a linear grade in the volume fraction in th
horizontal direction whenC51/p, given by

f1~x!'
~11e!L2x

~11e!l
. ~11!

Other systems with different grades in volume fractions c
also be constructed with different choices of the dens
function r(x).

Note that there arethree length scales associated wit
these systems: the size of the particlesR, the size of the
regionL, and the length scalel of the variation ofr(x,y).
Even if the region is taken to be infinite, there will still b
two length scales for these systems, namely,R andl. This is
in contrast to homogeneous two-phase random media on
finite domains, which possess only the length scale of
particles. We again note that statistically inhomogene
systems are not ergodic and hence ensemble averages c
be equated with volume averages.

In Fig. 1 we present realizations of inhomogeneous fu
penetrable disks with density functions given by Eqs.~7!–
~10!. Although only two-dimensional realizations are pr
sented, the simulation procedure may be used in higher
mensions as well. For all four systems~a!–~d!, the size of the
particles is R51 and the macroscopic system size
L5200. We also use the following parameters@for systems
~a!–~d!, respectively# to generate Fig. 1:

C50.8,l51, ~12!

C50.6,l55, ~13!

C50.3,l54, ~14!

C51/p,l5L. ~15!

We also notice that the maximum volume fraction of phas
in system~d! is f2'1 along the right edge; but the max
mum particle volume fraction for system~c! is roughly
f2'0.6 on the bottom edge.

We see in these figures that even the concept of volu
fraction has lost its simplicity: the probability that a poi
lies in a sphere is dependent on the absolute location of
point. In fact, all of the usual microstructure functions w
depend on the absolute positions of the arguments. None
less, the general theory of Poisson processes can be
ployed to characterize the microstructure of inhomogene
fully penetrable spheres.

Examples of inhomogeneous media that may be mode
similarly to systems~b! and ~d! are described in@23# and
@24#, respectively. In@23#, the authors consider a cylindrica
in situ Al-Al 3Ni functionally graded material in which the
volume fraction of Al3Ni increases with radial distance
These authors then measured the Young modulus and i
nal friction of the composite. In@24#, these authors consid
ered the production of Ti-Al/TiB2 composites. The transi
tions between layers for these materials were found to
approximately linear. We refer the reader to@13–18# for fur-



n
de

b-
e
lly

e
ic

iz

o

o
ui

r

-

is-

he
,

the
r
ple,

ity

-
ii
l-

t

,

55 1561MICROSTRUCTURE FUNCTIONS FOR A MODEL OF . . .
ther discussion of the different grades in volume fraction a
properties that have been considered in functionally gra
materials.

III. REVIEW OF THEORETICAL RESULTS
FOR MICROSTRUCTURE FUNCTIONS

In this section, we define the canonicaln-point micro-
structure functionHn , the genericn-particle probability den-
sity function rn , the n-point phase-1 probability function
Sn , the nearest-neighbor functionsE andH, and the lineal-
path functionL. We also review analytical expressions, o
tained by previous researchers, for these functions. In S
IV, we will evaluate these functions for inhomogeneous fu
penetrable spheres.

A. Canonical n-point microstructure function

We begin to quantify the microstructure ofstatistically
inhomogeneoussuspensions of spheres, including inhomog
neous fully penetrable spheres, by considering the canon
n-point microstructure functionHn(x

m;xp2m;rq) ~where
m<p andp1q5n), introduced and studied by Torquato@2#
for equal-sized spheres. This formalism was later general
to treat spheres with a polydispersivity in size@25#. As dis-
cussed in the introduction, this function has been used
certain rigorous bounds on the effective properties of tw
phase random media@3,5–10#.

This function is defined for all systems of suspensions
interacting, correlated spheres, including models that req
some degree of particle penetrability.@Thus fully penetrable
~spatially uncorrelated! spheres are a special case.# To permit
this generality, principles from statistical mechanics we
employed. We assume that there areN distinguishable
spheres that are placed into a volumeV and thus consider a
statistically inhomogenous system. We define

PN~r1 , . . . ,rN![PN~rN! ~16!

to be the probability density function of theN particle cen-
ters; that is, the quantityPN(r

N)drN gives the probability of
finding the center of spherei in a volume elementdr i about
r i for all i51, . . . ,N. FromPN , the specificn-particle prob-
ability density function is then defined to be

Pn~r
n!5E drn11 . . .drNPN~rN! ~17!

and the genericn-particle probability density function is de
fined by

rn~r
n!5

N!

~N2n!!
Pn~r

n!. ~18!

The quantityrn(r
n)drn is the probability of finding any

sphere center indr1 aboutr1, another sphere center indr2
about r2, . . . , andanother sphere center indrn about rn .
For statistically homogeneous systems,

rn~r1 , . . . ,rn!5rn~r11y, . . . ,rn1y! ~19!

for any vectory, by definition. As a consequence, for stat
tically homogeneous systems, any of then points ~say, r1)
d
d

c.

-
al

ed

in
-

f
re

e

can be fixed andrn can be expressed as a function of t
relative displacements to this fixed point. Mathematically

rn~r1 , . . . ,rn!5rn~r12, . . . ,r1n!, ~20!

where r i j5r j2r i . A simple corollary is thatr1(r1)5r,
wherer is the constant number density of spheres. On
other hand, thern will depend on the absolute position fo
inhomogeneous fully penetrable spheres; for exam
r1(r1)5r(r1), the intensity function defined in Sec. II.

Using this notation, we now define the canonicaln-point
microstructure function. We start by studying the probabil
Gn(x

p;rq)drq of simultaneously findingq particle centers
with configurationrq and p ‘‘test spheres’’ with respective
centersxp and radiia1 , . . . ,ap that contain no particle cen
ters. Forai.R, this is equivalent to test spheres with rad
bi5ai2R that lie completely outside of the particles. A
though theGn are dependent on the values of theai , we
suppress this dependence in our notation. We notice tha

Gn~B,rn!5rn~r
n!, ~21!

the genericn-particle probability density function. When
ai5R for all i , we define

Gn~x
n;B !5Sn~x

n! ~22!

to be then-point probability function for phase 1. Clearly
S1(x)5f1(x), the volume fraction of phase 1 atx.

Torquato@2# showed thatGn for statistically inhomoge-
neous media can be expressed as

Gn~x
p;rq!5

N!

~N2q!! E )
i51

p

I~xi ,ai !PN~rN!drq11•••drN ,

~23!

where

I~x;ai !5H 1, xPTi
0 otherwise

~24!

and

Ti5$x:ux2r j u.ai for all j51, . . . ,N%. ~25!

From these definitions,

I~x;ai !5)
j51

N

@12m~yj ;ai !#

512(
j51

N

m~yj ;ai !1(
j,k

N

m~yj ;ai !m~yk ;ai !•••,

~26!

whereyj5ux2r j u and

m~y;a!5H 1, y<a

0, y.a.
~27!
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1562 55J. QUINTANILLA AND S. TORQUATO
Torquato @2# derived both a Kirkwood-Salsburg serie
representation and a Mayer representation for theGn . We
give the latter here and refer the reader to Ref.@2# for the
former. He found that

Gn~x
p;rq!5(

s50

`

~21!sGn,s~x
p;rq!, ~28!

where

Gn,0~x
p;rq!5rq~r

q!)
k51

p

)
l51

q

e~ykl ;ak! ~29!

for s50 and

Gn,s~x
p;rq!5

1

s!)k51

p

)
l51

q

e~ykl ;ak!E rq1s~r
q1s!

3 )
j5q11

q1s F12)
i51

p

e~yi j ;ai !Gdrq11•••drq1s

~30!

for s>1. In these expressionsyi j5uxi2r j u and

e~y;a!512m~y;a!. ~31!

By differentiating Eq.~23! with respect toa1 , . . . ,am ,
wherem<p, Torquato@2# arrived at the definition of the
canonicaln-point correlation function for statistically inho
mogeneous media:

Hn~x
m;xp2m;rq!5~21!m

]

]a1
•••

]

]am
Gn~x

p;rq!,

~32!

which simplifies as

Hn~x
m;xp2m;rq!5

N!

~N2q!! E F)
i51

m

M~xi ;ai !G
3F )

i5m11

p

I~xi ,ai !G
3PN~rN!drq11•••drN , ~33!

where

M~x;ai !52
]I~x;ai !

]ai

5(
j51

N

d~ai2yj !2(
j,k

N

d~ai2yj !m~yk ;ai !

2(
j,k

N

d~ai2yk!m~yj ;ai !••• ~34!

andd is the Dirac delta function. Again, theHn are depen-
dent on the values ofa1 , . . . ,ap , but we suppress this de
pendence in our notation. Physically,M may be thought of
as the indicator function of the surface ofTi . Therefore,
whenai5R for all i , Hn(x

m;xp2m;rq) may be thought of as
the correlation function associated with findingq particle
centers with configurationrq, p2m pointsxp2m that lie out-
side of the particles, andm pointsxm that lie on the surface
of the particles. Such microstructural information is know
to occur in bounds on the effective properties of two-pha
random media@3,5–10#.

B. Nearest-neighbor microstructure functions

Closely related to theSn are the exclusion probabilitie
EV(x;z) andEP(x;z). The functionEV(x;z) is the probabil-
ity that the sphereV1(x;z) of radiusz centered at a pointx in
the void phase contains no particle centers, whileEP(x;z) is
the probability that the sphere contains no other particle c
ters given thatx is a particle center. For homogeneous a
inhomogeneous fully penetrable spheres, these probabil
are identical and will be referred to asE(x;z). Clearly,
E(x;0)51 andE(x;R)5f1(x).

The nearest-neighbor distribution function~more accu-
rately, probability density function! is defined fromE by

H~x;z!52
]E~x;z!

]z
. ~35!

We notice that these functions are also special cases o
canonicaln-point microstructure functionHn , defined in
Sec. III A. If a15z, then

H~x;z!5H1~x;B;B ! ~36!

and

E~x;z!5H1~B;x;B !. ~37!

C. Lineal-path function

The final microstructure function considered in this pap
is the lineal-path functionL ( i )(z), which is the probability
that a line segment of lengthz lies entirely in phasei . This
microstructure function has been obtained experimentally
sandstone @26# and magnetic gels @27#. For three-
dimensional systems,L ( i )(z) is also equivalent to the are
fraction of phasei measured from the projected image of
three-dimensional slice of thicknessz onto a plane@20#, a
quantity of long-standing interest in stereology@28#.

Lu and Torquato@20# showed that, for general systems
spheres,

L~z!511(
s51

`
~21!s

s! E rs~r
s!)
j51

s

m̂~x2r j ;z!dr j ,

~38!

where

m̂~x;z!5H 1, xPVE~z!

0 otherwise
~39!

andVE(z) is the exclusion region consisting of all poin
within the radiusR of the line of lengthz. This series expan-
sion forL(z) was obtained by using the same logic as in t
derivation of Mayer expansion ofGn , and indeed may be
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thought of as a special case ofHn with m̂ replacing the step
functionm, defined by Eq.~27!.

IV. EVALUATION OF MICROSTRUCTURE FUNCTIONS
FOR INHOMOGENEOUS FULLY PENETRABLE

SPHERES

In the preceding section, we discussed definitions
theoretical expressions of various microstructure functio
We will now evaluate these functions for inhomogeneo
fully penetrable spheres. We find that we obtain identi
results for the microstructure functions by using two diffe
ent methods: the formalism of Sec. III and the exclus
probability ~5! of Sec. II. To illustrate our methodology, w
also will evaluate and graph these functions for the line
grade model~d! in Fig. 1. The other systems of Fig. 1 ma
be treated in a similar fashion, but we do not present th
results here since the salient features are brought out we
model ~d!.

A. Canonical n-point microstructure function

As shown in Eqs.~28! and ~32!, the canonicaln-point
microstructure functionHn can be obtained as a series
terms of then-particle probability density functionsrs for
s>q. For inhomogeneous fully penetrable spheres, this fu
tion is clearly given by

rs~r
s!5r~r1!•••r~r s!, ~40!

and for homogeneous fully penetrable spheres~that is, the
underlying Poisson process is spatially stationary!

rs~r
s!5rs, ~41!

a constant.
For homogeneous fully penetrable spheres, Torquato@2#

substituted Eq.~41! into Eq. ~28! and found that

Gn~x
p;rq!5rqexp@2rVp~x

p;ap!#)
k51

p

)
l51

q

e~ykl ;ak!.

~42!

In this expression,Vp(x
p;ap) is the union volume ofp

spheres of radiiap[a1 , . . . ,ap centered atx1 , . . . ,xp , re-
spectively. Recall that we suppress the dependence of
Gn on the distancesai in our notation.

Differentiating Eq.~42!, the canonicaln-point correlation
function for homogeneous fully penetrable spheres is

Hn~x
m;xp2m;rq!5~21!mrqexp@2rVp~x

p;ap!#

3
]

]a1
•••

]

]am
)
l51

q

)
k51

p

e~ykl ;ak!

1~21!mrq)
l51

q

)
k51

p

e~ykl ;ak!

3
]

]a1
•••

]

]am
exp@2rVp~x

p;ap!#.

~43!
d
s.
s
l

n

r-

se
by

c-

he

The expansion~28! can also be evaluated for inhomogeneo
fully penetrable spheres with density functionr(x). After
substituting Eq.~40! into Eq. ~28! and simplifying, we con-
clude that

Gn~x
p;rq!5r~r1!•••r~rq!

3expF2E
Vp~xp;ap!

r~r !dr G)
k51

p

)
l51

q

e~ykl ;ak!.

~44!

Notice that this reduces to Eq.~42! in the special case tha
r(x) is constant.

The expression~44! can also be obtained by using th
properties of a nonstationary Poisson process. Theq particle
centers will have configurationrq aboutdrq with probability
r(r1)•••r(rq)dr

q. The probability thatVp(x
p;ap) is empty

of centers is precisely the exponential term of Eq.~44! in
light of Eq. ~5!. Since these events are independent if theq
particle centers do not lie withinVp(x

p;ap), we finally obtain
Eq. ~44!.

We also can obtainHn by inserting Eq.~44! into Eq.~32!.
We obtain Eq. ~43! for inhomogeneous fully penetrabl
spheres from Eq.~43! with the replacements

rq→r~r1!•••r~rq!, ~45!

rVp~x
p;ap!→E

Vp~xp;ap!
r~r !dr . ~46!

B. Microstructure functions derived from Hn

As noted in Eqs.~21! and ~22!, then-point functionsrn
andSn can be obtained from theHn . Using Eq.~44!, we see
that

rn~r
n!5r~r1!•••r~rn!, ~47!

as expected, and

Sn~x
n!5expF2E

Vn~xn;R!
r~r !dr G , ~48!

where Vn(x
n;R) is the union ofn spheres with common

radiusR centered atxn. In particular,

S1~x!5expF2E
V1~x;R!

r~r !dr G . ~49!

We see explicitly that, whenr(r ) is not constant, even the
concept of volume fraction is dependent on spatial locati

We notice that computingSn(x
n) is prohibitively difficult

for generalr(x) due to the complexity of the right-hand sid
of Eq. ~48!. However, we can accurately approximateSn
under the assumption that the variation inr occurs over a
much longer length scale than the size of the spheres. S
pose the regionVn(x

n;R) can be written as

Vn~x
n;R!5 ø

i51

k

Ai , ~50!
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where eachAi is connected andAiùAj5B for iÞ j . For
example, for n53 with ux12u,2R, ux13u.2R, and
ux23u.2R, we could set A15V2(x1 ,x2 ;R) and
A25V1(x3 ;R); finer decompositions can also be consider
Using Eq.~50!, theSn can be approximated by

Vn~x
n!'expF2(

i51

k

r~yi !vol~Ai !G , ~51!

where yi is contained inAi and vol(Ai) is the volume of
Ai .

FIG. 2. Microstructure functionf1(x)5S1(x) ~that is, the grade
in volume fraction! for system~d! of Fig. 1, calculated from Eq.
~49!. The grade in volume fraction is approximately given
f1(x)512x/L. The origin of the system is placed in the lower-le
corner.

FIG. 3. Two-point probability functionS2(x1 ,x2) versus radial
distancez5ux22x1u for system~d! of Fig. 1. Thex coordinate of
x1 is chosen to be 50~solid lines!, 100 ~dotted lines!, and 150
~dashed lines!; recall that the side length of the box isL5200. In
each set of lines, the lowest line corresponds tou50 @where
x22x15(zcosu,zsinu)#, the middle tou5p/4, and the highest to
u5p/2. As expected,S2 is dependent on the absolute positions
x1 andx2, not just the radial displacement.
.

In Fig. 2, we present a graph ofS1 for system~d!, the
linear-grade model of Fig. 1. Recall that the radii of the dis
is unity and the side length of the square is 200, and
origin is placed at the lower-left corner of system~d!. We see
that Eq. ~11!, obtained from Eqs.~10! and ~51!, is indeed
very close to the true graph ofS1. We present graphs ofS2
for this same density function in Fig. 3. We see th
S2(x1 ,x2) is dependent on both the absolute positions ofx1
andx2, expressed in this figure through the location ofx1 and
the distance and direction of the displacementx22x1. We
also see thatS2 increases somewhat asu increases from 0 to
p/2 and that foruÞp/2, S2 decays to zero as the distanc
increases. This is intuitively clear since the volume fracti
of phase 1 decreases as thex coordinate increases.

Finally, the nearest-neighbor microstructure functions c
also be obtained from theHn , as given in Eqs.~36! and~37!,
and so

f

FIG. 4. Exclusion probabilityE(x;z) versus radial distancez for
system~d! of Fig. 1. Thex coordinate ofx is chosen to be 50~solid
line!, 100 ~dotted line!, and 150~dashed line!. We see thatE is
dependent upon the absolute positionx.

FIG. 5. Lineal-path functionL(x1 ,x2) versus radial distancez
for Fig. 1, calculated from Eq.~53!. The legend is the same as i
Fig. 3. Once again, this microstructure function is dependent on
absolute positions ofx1 andx2.
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E~x;z!5expF2E
V1~x;z!

r~r !dr G ~52!

and similarly forH(x;z). Graphs ofE for the linear-grade
model ~d! of Fig. 1 are shown in Fig. 4.

C. Lineal-path function

The final microstructure function analytically evaluat
here is the lineal-path functionL(x1 ,x2), the probability that
the line segment connectingx1 andx2 lies entirely in phase
1. This function was expressed in Sec. III simply asL(z) for
statistically homogeneous and isotropic two-phase rand
media, wherez5ux12x2u.

As with theHn , we can substitute Eq.~40! into the series
expansion~38! to obtain

L~x1 ,x2!5expF2E
VE~x1 ,x2!

r~r !dr G , ~53!

whereVE(x1 ,x2) is the region of all points within a distanc
R of the line segment betweenx1 andx2.

Alternatively, this expression forL can also be obtained
using the properties of nonstationary Poisson process, a
now show. The line segment connectingx1 and x2 will lie
entirely outside of the particles exactly when there are
particle centers in the regionVE(x1 ,x2). From Eq.~5!, the
probability of this event is given by Eq.~53!.
. A

h
tru
G
ce
be

ul
m

we

o

In Fig. 5, we show plots ofL(x1 ,x2) for the linear-grade
model ~d! of Fig. 1; these plots are drawn according to t
same legend as for Fig. 3. We again see that the lineal-
function is dependent on the absolute positions of its t
arguments.

V. CONCLUSION

We have proposed a microstructural model for stati
cally inhomogeneous random media. This model is ba
upon the theory of spatially nonstationary Poisson proces
and can be applied to systems with any grade in volu
fraction. Introducing this model of inhomogeneous fully pe
etrable spheres allows us to develop theoretical express
for microstructure functions more complicated than t
simple one-point microstructure functionf1(x), such as the
canonicaln-point microstructure function and the lineal-pa
function. This quantitative characterization of the micr
structure will be essential in the study of the effective pro
erties of random media.
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