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Microstructure functions for a model of statistically inhomogeneous random media

J. Quintanilld and S. Torquatd
Princeton Materials Institute and Department of Civil Engineering and Operations Research, Princeton University,
Princeton, New Jersey 08544
(Received 8 August 1996

We propose a model for statistically inhomogeneous two-phase random media, including functionally
graded materials, consisting of inhomogeneous fully peneti@uisson distributedspheres. This model can
be constructed for any specified variation of volume fraction and permits one to represent and evaluate certain
n-point correlation functions that statistically characterize the microstructure for this model. Unlike the case of
statistically homogeneous media, the microstructure functions depend upon the absolute positions of their
arguments. However, as with homogeneous random media, this microstructural information will be useful in
obtaining rigorous estimates of the effective properties of such sysf&h863-651X98)08601-2

PACS numbg(s): 05.20-y, 61.43.Hv, 61.43.Gt

I. INTRODUCTION
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Much progress has been made in recent years in charac-

terizing the microstructure of statistically homogeneous twowhere « is specified anc, andx, are thex coordinates of
phase random media via a variety nfpoint correlation  the left and right edges of the system, respectively. Another
functions[1-3]. For ergodic ensembles, timepoint correla-  variation of the volume fraction is given by

tion functions are translationally invariant, that is, statistical

homogeneity is implied4], and hence one can equate en- B1(X)=ag+arx+apx?, ()
semble averages with volume averages in the infinite-volume o

limit. This microstructural information is fundamental in rig- Where the coefficients are chosen so that @, (x)<1
orously determining the effective transport, eIectromagnetid"”th'n the system. However, a specific microstructural model

and mechanical properties of ergodic two-phase random mds not typically presented that obeys these or other specified
dia[3,5-10 grades in volume fraction, and hence higher-order micro-

Significantly less research has been devoted to the Stucﬁ{ruc_tural information in the form oh—.pomt correlation
of statistically inhomogeneousvo-phase media. In such in- nctlons_has heretofore not been obtained. .

S ) . ' Following the development of the study of the microstruc-
stances, ergodicity is lost; that is, one cannot equate eny,

semble and volume averages. One simple example of such e and properties of homogeneous random mEgjawe
ges. P P opose a microstructural model for particulate, statistically

medium is any two-phase system that is defined on a finitg,, o 5geneous two-phase random media in this paper. This
region. Howeve.r, as we WI!| c'ie'scrlbeiln Sec. I, defining aogel is a two-phase system consisting of ishomoge-
two-phase medium on an infinite region does not precludeeqys distribution of fully penetrable spheiespace whose
statistical inhomogeneity. Examples of statistically inhomo'particle density obeyany specified variation in volume frac-
geneous, two-phase media include porous media with spapn, The space exterior to the spheres is called phase 1, and
tially variable fluid permeabilitf11], composites in which phase 2 is the space occupied by the spheres. This inhomo-
the heterogeneity length scale is not much smaller than thgeneous model is nontrivial in that cluster formation natu-
macroscopic size of the sample, distributions of galaxiesally arises and it permits significantly more complicated mi-
[12], and functionally graded materigl$3—18. crostructures than the aforementioned layered models. Four
We defineg;(x) to be the volume fraction of phaseata two-dimensional realizations of this model with different
point X, so thate(X) + ¢,(x)=1 for all x. Although most grades are shown in Fig. 1.
applications permiip,(x) to vary in only one direction, it Explicitly defining this model permits a quantitative char-
can be chosen to be any function in principle. Simple modelsicterization of its microstructure, and we will use the theory
of statistically inhomogenous media include layered mediapf nonstationary Poisson process to develop analytical ex-
so thate¢(x) is a step function. For macroscopically rectan- pressions for various microstructure functions that have been
gular systems, a more complicated grade that has been prevaluated previously for homogeneous modd$ These
viously studied i§17] functions include the canonicalpoint microstructure func-
tion H,, [2], the nearest-neighbor functiois and H [19],
and the lineal-path functioh [20]. Definitions and prior
*Present address: Department of Mathematics, University ofinalytical expressions for these functions are presented be-
North Texas, Denton, TX 76203. Electronic address:fore their evaluation for inhomogeneous fully penetrable

johng@cardinal.math.unt.edu spheres. Unlike the homogeneous cdlsese microstructure
TAuthor to whom correspondence should be addressed. Electronftinctions will depend on the absolute positions of their ar-
address: torquato@matter.princeton.edu gumentsas discussed in Sec. IV. This statistical character-
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FIG. 1. Four realizations of statistically inhomogeneous fully penetrable disks. Si@temay be thought of as arising from a centrifugal
field, while systemb) can be viewed as a system in an “anticentrifugal” field. Systejris one under a constant gravitational field in the
vertical direction, whereas syste(a) has a linear grade in the volume fraction in the horizontal direction. The density functions of systems
(2)—(d) are given by Eqs(7)—(10), respectively, with parameters that are given in the text.

ization of the microstructure for two-phase random media
will undoubtedly be fundamental in the study of the effective vB= f p(x)dx ()
properties. B

In Sec. Il, we describe the mathematical underpinnings of
systems of inhomogeneous fully penetrable spheres. We alsgy some functionp on R°. When p(x)=1 for all x, the
describe how such systems can be generated by compuigeasurer is ordinary Lebesgue measure and hengeis
simulation. In Sec. Ill, we discuss previous analytical resultssimply the volume ofB. Condition (3) is satisfied ifv is
for the microstructure functions considered in this papergpsolutely continuous to Lebesgue meagar.
These functions are evaluated for inhomogeneous fully pen- A general Poisson proces¥ with intensity measure is
etrable spheres in Sec. IV. defined to be a point process that satisfies the following two
properties[22]: (i) The number of points in a bounded Le-
besgue seB has any Poisson distribution with meaB, that
is, form=0,1,2 ...,

In this section, we provide the mathematical basis for sys-
tems of inhomogeneous fully penetrable spheres. Although (vB)™
based upon the theory of general Poisson processes and mea- PrNV(B)=m)= e B
sure theonjf21], we will not use the full abstractions of this m!
theory to describe these systems. We then describe how re-

alizations of inhomogeneous fully penetrable spheres may b{ﬁ) For all n>2, the random variables/(A,) MA,)
=2, e n

generated by computer simulations. are independent whenever the Lebesgue Agls. . /A, are
pairwise disjoint.

The densityp(x) is called thedensity functiorof A; this

We will considerD-dimensional spac&® as our measur- function will be used often in this paper. It is important to
able space. We also assume thais a measureon R°, so  note that ifp(x) = p, a constant, then a general Poisson pro-
that the measureB of any measurable s& with respectto cess reduces to an ordinary Poisson process with humber
v is given by density (or intensity p. However, even ifp(x) is not con-

Il. DEFINITION OF INHOMOGENEOUS FULLY
PENETRABLE SPHERES

4

A. Mathematical basis
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stant, it has an appealing intuitive interpretatipifx)dx is ~ as a system in an “anticentrifugal” field. Systefo) [Eq.
the probability that there is a point ¢ in an infinitesimal ~ (9)] is one under a constant gravitational field in the vertical

regiondx aboutx. direction, whereas, as we will show in Sec. IV, systén
We notice from condition(i) that the probability that a [EQ. (10)] has a linear grade in the volume fraction in the
regionB contains no points alV'is horizontal direction whel© =1/, given by
PrN(B)=0)=e "B= f d (1+e)L—x "
NV(B)=0)=e ""=expg — BP(X) X|. ©) ¢1(X)~W- (11

This calculation of theexclusion probabilityfor B will be ~ Other systems with different grades in volume fractions can
used repeatedly for different sdsn the calculations of Sec. also be constructed with different choices of the density
\A function p(x).

We also notice that this general framework can be used to Note that there ar¢hree length scales associated with
define systems onfinite region’R by choosing the intensity these systems: the size of the particRsthe size of the

function to be the restriction g to R, that is, regionL, and the length scale of the variation ofp(x,y).
Even if the region is taken to be infinite, there will still be
_ p(X), XeR two length scales for these systems, namlgnd\. This is
PR(X) = 0 otherwise. 6) in contrast to homogeneous two-phase random media on in-

finite domains, which possess only the length scale of the
The microstructure functions for such finite systems are themparticles. We again note that statistically inhomogeneous

calculated by usingx in place ofp. systems are not ergodic and hence ensemble averages cannot
be equated with volume averages.
B. Simulation of inhomogeneous fully penetrable spheres In Fig. 1 we present realizations of inhomogeneous fully

Constructing realizations of general Poisson processes ¢
be easily done in two stages if the density functpgx) is
bounded oRP [22], say,p(x)<p*. First, a Poisson process
of densityp* is simulated. Second, the resulting point pat-
tern is thinned. Each poirnt, independently of the other
points, is kept with probability(x)/p* or deleted with prob-
ability 1—p(x)/p*. The resulting point pattern is a general

enetrable disks with density functions given by E(®-
‘%TO). Although only two-dimensional realizations are pre-
sented, the simulation procedure may be used in higher di-
mensions as well. For all four systert@—(d), the size of the
particles is R=1 and the macroscopic system size is
L=200. We also use the following parametfiar systems
(a)—(d), respectively to generate Fig. 1:

Poisson process with intensity functigiix). This construc- C=08N=1 (12)
tion may be enhanced by partitionirgP into regions in ’ '
which p(x) does not vary significantly. Finally, we place C=0.6\=5 (13)
spheres of common radil® on the points of\/ to construct o '
a realization of inhomogeneous fully penetrable spheres. C=0.3r=4, (14)

Four examples of the density function are given as
C=1mx,\=L. (15

raL)?
P(X,V)IC(?) : %
We also notice that the maximum volume fraction of phase 2
c in system(d) is ¢,~1 along the right edge; but the maxi-
ra . . .
p(x,y)=—2exp(——), (8 mum particle volume fraction for syster(t) is roughly
R $,~0.6 on the bottom edge.
We see in these figures that even the concept of volume
p(X,y) = Eexy{ _ &) (9) fraction has lost its simplicity: the probability that a point
' R? L)’ lies in a sphere is dependent on the absolute location of the
point. In fact, all of the usual microstructure functions will
[1+€]N depend on the absolute positions of the arguments. Nonethe-
[1+e]L—x]’ (10 less, the general theory of Poisson processes can be em-
ployed to characterize the microstructure of inhomogeneous
respectively. Here is the distance from a fixed poitisay  fully penetrable spheres.
the center of the systent is a multiplicative factorL is the Examples of inhomogeneous media that may be modeled
length scale of the entire system,is the length scale of the similarly to systemgb) and (d) are described 23] and
grade in volume fraction, anelis very small. For all of these [24], respectively. 23], the authors consider a cylindrical
systems, the origin is placed at the lower-left corner. As disin situ Al-Al 3Ni functionally graded material in which the
cussed above, the value of the density functid) at a  volume fraction of AgNi increases with radial distance.
given pointx is directly correlated to the average density of These authors then measured the Young modulus and inter-
centers around. The systems generated by these densitynal friction of the composite. 1fi24], these authors consid-
functions may be thought of as arising from special externaéred the production of Ti-Al/TiB composites. The transi-
fields. Systenta) [Eq. (7)] may be thought of as arising from tions between layers for these materials were found to be
a centrifugal field, while systertb) [Eq. (8)] can be viewed approximately linear. We refer the readef 18—18§ for fur-

L

C
P(X,Y)Zﬁm
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ther discussion of the different grades in volume fraction anctan be fixed ang, can be expressed as a function of the
properties that have been considered in functionally gradetklative displacements to this fixed point. Mathematically,
materials.

pn(rll e rrn):pn(r12! e !rln)v (20)
ll. REVIEW OF THEORETICAL RESULTS
FOR MICROSTRUCTURE FUNCTIONS where ri;=r;—r;. A simple corollary is thatp,(r,)=p,
wherep is the constant number density of spheres. On the
other hand, the,, will depend on the absolute position for

inhomogeneous fully penetrable spheres; for example,

In this section, we define the canoniaalpoint micro-
structure functiorH,, , the generia-particle probability den-

sity function p,,, the n-point phase-1 probability function p1(r1)=p(ry), the intensity function defined in Sec. II.
S, , the nearest-neighbor functioBsandH, and the lineal- Using this notation, we now define the canoninaboint

path functionL. We also review analytical expressions, ob- yicrastructure function. We start by studying the probability

tained by previous researchers, for these functions. In Se%n(xp;rq)drq of simultaneously findingy particle centers

IV, we will evaluate these functions for inhomogeneous fully, i1 configurationrd and p “test spheres” with respective
penetrable spheres. centersx” and radiia, , . . . ,a, that contain no particle cen-
ters. Fora,>R, this is equivalent to test spheres with radii
b;=a;—R that lie completely outside of the particles. Al-
We begin to quantify the microstructure efatistically ~ though theG, are dependent on the values of tag we
inhomogeneoususpensions of spheres, including inhomoge-suppress this dependence in our notation. We notice that
neous fully penetrable spheres, by considering the canonical
n-point microstructure functionH,(x™;xP~™r9% (where
m<p andp+qg=n), introduced and studied by Torqud®)
for equal-sized spheres. This formalism was later generalizedhe genericn-particle probability density function. When
to treat spheres with a polydispersivity in si@b]. As dis- @ =R for all i, we define
cussed in the introduction, this function has been used in
certain rigorous bounds on the effective properties of two-
phase random med[&,5-10.
This function is defined for all systems of suspensions ofo be then-point probability function for phase 1. Clearly,
interacting, correlated spheres, including models that requir&,(x) = ¢+(x), the volume fraction of phase 1 at

A. Canonical n-point microstructure function

Gn(D,rM) = pa(r™), (21)

Gn(x")=S(x") (22

some degree of particle penetrabilifithus fully penetrable
(spatially uncorrelatedspheres are a special cdsEo permit

Torquato[2] showed thaiG,, for statistically inhomoge-
neous media can be expressed as

this generality, principles from statistical mechanics were

employed. We assume that there dxe distinguishable
spheres that are placed into a volumend thus consider a
statistically inhomogenous system. We define

Pn(r, - i) =Pr(rY)

to be the probability density function of thé particle cen-
ters; that is, the quantit?(rN)dr™N gives the probability of
finding the center of spheiiein a volume elemendr; about
riforalli=1,... N. FromPy, the specifim-particle prob-
ability density function is then defined to be

(16)

F’n(r“)=f drpsy ... dryPy(r) 7

and the generia-particle probability density function is de- From these definitions,

fined by

polr™) = =y P (18

The quantity p,(r")dr" is the probability of finding any
sphere center inlr; aboutr,, another sphere center dr,
aboutr,, ..., andanother sphere center i, aboutr,.
For statistically homogeneous systems,

pa(Fy, o) =pn(rety, ..

for any vectory, by definition. As a consequence, for statis-

tically homogeneous systems, any of thgoints (say, r4)

N! P
Gn(xP;rd)= WJ il:[l Z(Xi ;) Pn(r)drgyq- - - dry,
(23
where
1, xe7;
TX53)=14 stherwise (24
and
Ti={x:[x—rj|>a; for all j=1,... N}. (25
N
Z<x;ai)=j[[1[1—m<yj;ai>]
N N
=1-> m(y;;a)+ > m(yj;a)m(y;a)---,
j=1 <k
(26)
wherey;=|x—r;| and
1, y=a
mly;a)= 0, y>a. @7
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Torquato [2] derived both a Kirkwood-Salsburg series the correlation function associated with findimg particle

representation and a Mayer representation forGhe We
give the latter here and refer the reader to R&f.for the
former. He found that

Gr(X®r =2, (=1)°Gng(x%ir),

(28)
where
p q
G o0®ir ) =pg(r) 1 L1 ety;aw (29
for s=0 and
LA
ns(xp rd)= S_IL'[l ];[ e(Yii yak)J Pq+s(rq °)
q+s P
x II |1-11 e(yij;a) |drgeq- - -drgis
j=q+1 i=1
(30)
for s=1. In these expressiong;=|x;—r;| and
e(y;a)=1-m(y;a). (31
By differentiating Eq.(23) with respect toay, ... ,am,

where m=p, Torquato[2] arrived at the definition of the

canonicaln-point correlation function for statistically inho-

mogeneous media:

0 J
Hp(x™xP~Mr9)=(— 1)m(7a . 'EGn(Xp;fq),
) (32
which simplifies as
Ha (XXM = o= q),f 11 M0x;a)
H Z(%; @)
i=m+1
XPy(rN)drg, - - -dry, (33
where
o JL(X;a;)
M(x;a))=— 7,
N
:jzl yj) 2 o(a Y ym(yy;a;)
N
—gk s(ai—yom(y;;a)- - (34)

and é is the Dirac delta function. Again, thd,, are depen-
dent on the values o, ...
pendence in our notation. Physicall¥/ may be thought of
as the indicator function of the surface @f. Therefore,
whena;=R for all i, H,(x™;xP~™;r9) may be thought of as

ap, but we suppress this de-

centers with configuration”, p—m pointsx?~ ™ that lie out-
side of the particles, anch pointsx™ that lie on the surface

of the particles. Such microstructural information is known
to occur in bounds on the effective properties of two-phase
random medid3,5-10.

B. Nearest-neighbor microstructure functions

Closely related to thés, are the exclusion probabilities
Ey(x;2) andEp(x;z). The functionE(x;z) is the probabil-
ity that the spher®/,(x;z) of radiusz centered at a pointin
the void phase contains no particle centers, whip€x;z) is
the probability that the sphere contains no other particle cen-
ters given thak is a particle center. For homogeneous and
inhomogeneous fully penetrable spheres, these probabilities
are identical and will be referred to d&s(x;z). Clearly,
E(x;0)=1 andE(x;R) = ¢1(X).

The nearest-neighbor distribution functigmore accu-
rately, probability density functignis defined fromE by

JE(X;2)
iz

H(x;z2)=— (35

We notice that these functions are also special cases of the

canonical n-point microstructure functiorH,, defined in

Sec. lll A. If a;=2z, then
H(x;z)=H

1(X;,;) (36

and

E(x;2)=H(J;x,9). (37

C. Lineal-path function

The final microstructure function considered in this paper
is the lineal-path functior.()(z), which is the probability
that a line segment of lengthlies entirely in phasé. This
microstructure function has been obtained experimentally for
sandstone [26] and magnetic gels[27]. For three-
dimensional systemd,()(z) is also equivalent to the area
fraction of phasé measured from the projected image of a
three-dimensional slice of thicknegsonto a plang20], a
guantity of long-standing interest in stereold@sl.

Lu and Torquatd20] showed that, for general systems of
spheres,

L(z)= 1+E 1 )fps(rs)j[[l M(x—r;;2)dr;,
(39)
where
~ 1, xeQg(2)
m(x,z)z[o otherwise 39

and Q¢(z) is the exclusion region consisting of all points
within the radiusR of the line of lengthe. This series expan-
sion forL(z) was obtained by using the same logic as in the
derivation of Mayer expansion d&,,, and indeed may be
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thought of as a special case ldf, with m replacing the step The expansioli28) can also be evaluated for inhomogeneous

function m, defined by Eq(27). fully penetrable spheres with density functigiix). After
substituting Eq(40) into Eq. (28) and simplifying, we con-

IV. EVALUATION OF MICROSTRUCTURE FUNCTIONS clude that

FOR INHOMOGENEOUS FULLY PENETRABLE p.rq

SPHERES Gh(xPrf)=p(ry)- - 'P(rq)
. . . _ P g
In the preceding section, we discussed definitions and .

theoretical expressions of various microstructure functions. Xex;{ fv (xP ap) p(r)dr }H U e(Yisa)

We will now evaluate these functions for inhomogeneous

fully penetrable spheres. We find that we obtain identical (44
results for the microstructure functions by using two differ-
ent methods: the formalism of Sec. Il and the exclusion
probability (5) of Sec. Il. To illustrate our methodology, we
also will evaluate and graph these functions for the linear-
grea?ree:ar?eodd?rsd; ';;;gr lfa;rr:}snc,)tgﬁ'[ jv)gstggn ﬁoﬁfpﬁlegseitwﬁgsgenters will have configuratiorft aboutdr® with probability

q P-gP
results here since the salient features are brought out well r1)- - p(rg)dri. The probability thal/,(x".a") is empty
model (d). f centers is precisely the exponentlal term of E44) in

light of Eq. (5). Since these events are independent ifghe

] ) ) ) particle centers do not lie withii,(x";a®), we finally obtain
A. Canonical n-point microstructure function Eq. (44)

Notice that this reduces to E42) in the special case that
p(X) is constant.
The expressior(44) can also be obtained by using the
properties of a nonstationary Poisson process.d particle

As shown in Egs(28) and (32), the canonicah-point We also can obtaifl,, by inserting Eq(44) into Eq.(32).
microstructure functiorH, can be obtained as a series in We obtain Eq.(43) for inhomogeneous fully penetrable
terms of then-particle probability density functionps for ~ spheres from Eq43) with the replacements
s=q. For inhomogeneous fully penetrable spheres, this func-
tion is clearly given by pi—p(ry)---p(ry), (45

ps(r)=p(ry)---p(ry), (40)

and for homogeneous fully penetrable spheitest is, the
underlying Poisson process is spatially statiopary

pVp(XP; ap)—>J p(r)dr. (46)

x :aP)

B. Microstructure functions derived from H,

ps(r¥)=p" (41) As noted in Egs(21) and (22), the n-point functionsp,,
andS, can be obtained from thd,,. Using Eq.(44), we see
a constant. that
For homogeneous fully penetrable spheres, Torql{@to
substituted Eq(41) into Eq.(28) and found that pn(rM=p(ry)---p(rpy), 47)

P q
as expected, and
Gn(XP;r%) = pexl — pVp(x®;a”) ] 11 11 e(viasa).

42 sn<x“>=exp[ - f p(r)dr|, (48)
Vn(xX";R)
In this expressionV,(xP;aP) is the union volume ofp
spheres of radia’=a,, . .. .a, centered ak,, ... X,, re-  whereV,(x";R) is the union ofn spheres with common
spectively. Recall that we suppress the dependence of thadiusR centered ak". In particular,
G,, on the distancesg; in our notation.
Differentiating Eq.(42), the canonicah-point correlation B
function for homogeneous fully penetrable spheres is Si(x)=exg - Vl(X;R)p(r)dr : (49)
Ha(X"xP™ T rf) = (= 1)Mpexd — pVp(xP;aP) ] We see explicitly that, whep(r) is not constant, even the
concept of volume fraction is dependent on spatial location.
.. _H H e(Yi ) We notice that computing,(x") is prohibitively difficult
831 dami=1 for generalp(x) due to the complexity of the right-hand side
q p of Eq. (48). However, we can accurately approximadg
—1)™p H H (Vi3 under the assumption that the variationgroccurs over a

much longer length scale than the size of the spheres. Sup-
5 5 pose the regioW,(x";R) can be written as
X——- . ——exd —pV,(xP;aP)]. K

da;  dam V,(XmR)= U A, (50
43) =1
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FIG. 2. Microstructure functiop;(x) =S;(x) (that is, the grade FIG. 4. Exclusion probabilitfE(x; z) versus radial distancefor
in volume fraction for system(d) of Fig. 1, calculated from Eq. System(d) of Fig. 1. Thex coordinate of is chosen to be 5@olid
(49). The grade in volume fraction is approximately given by line), 100 (dotted ling, and 150(dashed ling We see tha€ is
$1(x)=1—x/L. The origin of the system is placed in the lower-left dependent upon the absolute position

corner. In Fig. 2, we present a graph &, for system(d), the

linear-grade model of Fig. 1. Recall that the radii of the disks

is unity and the side length of the square is 200, and the

origin is placed at the lower-left corner of systéd). We see
dthat Eqg.(11), obtained from Eqs(10) and (51), is indeed

very close to the true graph &;. We present graphs &,

for this same density function in Fig. 3. We see that

S,(X1,X,) is dependent on both the absolute positionx,of

andx,, expressed in this figure through the locationxpfind

the distance and direction of the displacemestx;. We

also see tha$, increases somewhat dsncreases from O to
wherey; is contained inA; and vol(A;) is the volume of #/2 and that foro+# /2, S, decays to zero as the distance
Ai. increases. This is intuitively clear since the volume fraction
of phase 1 decreases as theoordinate increases.

Finally, the nearest-neighbor microstructure functions can

where eachA; is connected and\NA;=C for i#j. For
example, for n=3 with |xJ]<2R, |x;3>2R, and
[X,3 >2R, we could set A;=V,(x1,X;;R) and
A,=V1(X3;R); finer decompositions can also be considere
Using Eq.(50), the S, can be approximated by

k
Vn(X”)“eXF{ _21 P(Yi)VOI(Ai)} (51)

0.8 . . ; ; ; ) . .
also be obtained from thid,,, as given in Eqs(36) and(37),
and so

06 ’ 0.8 . .

o 04 - i

0.2 F -
AN
\\
0.0 Il 1 1 1 It
0 1 2 3 4 5 6
Radial distance, z
FIG. 3. Two-point probability functiors,(x,,X,) versus radial

distancez=|x,—x,| for system(d) of Fig. 1. Thex coordinate of
X, is chosen to be 5@solid lineg, 100 (dotted lineg, and 150
(dashed lines recall that the side length of the box lis=200. In
each set of lines, the lowest line correspondséte0 [where FIG. 5. Lineal-path functiorL(x;,X,) versus radial distance

Xo— X, = (zcosd,zsind)], the middle tod= =/4, and the highest to for Fig. 1, calculated from Eq53). The legend is the same as in
0= m/2. As expectedsS, is dependent on the absolute positions of Fig. 3. Once again, this microstructure function is dependent on the
X1 andX,, not just the radial displacement. absolute positions of; andx,.

Radial distance, z
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In Fig. 5, we show plots oE(x;,X,) for the linear-grade
E(x;z):exr{—f _ P(f)df} (52)  model(d) of Fig. 1; these plots are drawn according to the
Vatxiz) same legend as for Fig. 3. We again see that the lineal-path
function is dependent on the absolute positions of its two

and similarly forH(x;z). Graphs ofE for the linear-grade arguments.

model(d) of Fig. 1 are shown in Fig. 4.

, , V. CONCLUSION
C. Lineal-path function

We have proposed a microstructural model for statisti-
cally inhomogeneous random media. This model is based
upon the theory of spatially nonstationary Poisson processes
and can be applied to systems with any grade in volume
fraction. Introducing this model of inhomogeneous fully pen-
"Btrable spheres allows us to develop theoretical expressions
for microstructure functions more complicated than the
simple one-point microstructure functiaby(x), such as the
canonicaln-point microstructure function and the lineal-path

function. This quantitative characterization of the micro-
L(xl,x2)=ex;{ —f p(r)dr}, (53 structure will be essential in the study of the effective prop-
Qelxq.%) erties of random media.

The final microstructure function analytically evaluated
here is the lineal-path functidn(x;,x,), the probability that
the line segment connecting andx, lies entirely in phase
1. This function was expressed in Sec. Il simplyLldg) for
statistically homogeneous and isotropic two-phase rando
media, where=|x; —Xj|.

As with theH,,, we can substitute E¢40) into the series
expansion(38) to obtain

whereQ (x4 ,X,) is the region of all points within a distance
R of the line segment betweeq andx,.

Alternatively, this expression far can also be obtained The authors gratefully acknowledge the support of the
using the properties of nonstationary Poisson process, as waffice of Basic Energy Sciences of the U.S. Department of
now show. The line segment connectirg and x, will lie Energy under Grant No. DE-FG02-92ER14275 and the Air
entirely outside of the particles exactly when there are nd-orce Office of Scientific Research under Grant No. F49620-
particle centers in the regiof:(x;,X,). From Eq.(5), the  92-J-0501. J.Q. acknowledges the National Science Founda-
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